Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites

نویسندگان

  • Jing Niu
  • Mark Arentshorst
  • P. Deepa S. Nair
  • Ziyu Dai
  • Scott E. Baker
  • Jens C. Frisvad
  • Kristian F. Nielsen
  • Peter J. Punt
  • Arthur F.J. Ram
چکیده

The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. Finally, we show that our systems genetics approach is a powerful tool to identify trait mutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth Inhibition of Aspergillus flavus Isolated from Pistachio by Secondary Metabolites

Pistachio nut is a strategic product throughout the world, especially in Iran. There are some problems that reduce production and export of pistachios, for example, postharvest fungi, especially Aspergillus spp., that lead to production of mycotoxins. Nowadays the use of chemical and synthetic antifungals is discouraged and reduced because of health risks to mankind and nature. In present study...

متن کامل

Expression of aflR, veA and laeA as regulators of aflatoxins and cyclopiazonic acid biosynthesis pathway in Aspergillus flavus

In this study, the production of aflatoxin B1 (AFB1) and cyclopiazonic acid (CPA) was investigated in toxigenic and non-toxigenic Aspergillus flavus with respect to expression of aflR, veA and laeA genes that are involved to toxins production. A. flavus strains were cultured in YES broth at 28 °C for 4 days and the presence of (AFB1) and (CPA) was confirmed and measured by TLC and HPLC. The exp...

متن کامل

Lae1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides.

The filamentous fungus Fusarium verticillioides can cause disease of maize and is capable of producing fumonisins, a family of toxic secondary metabolites linked to esophageal cancer and neural tube defects in humans and lung edema in swine and leukoencephalomalacia in equines. The expression of fumonisin biosynthetic genes is influenced by broad-domain transcription factors (global regulators)...

متن کامل

Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese.

The external pH appeared to be the main factor governing oxalic acid production by Aspergillus niger. A glucose-oxidase-negative mutant produced substantial amounts of oxalic acid as long as the pH of the culture was 3 or higher. When pH was decreased below 2, no oxalic acid was formed. The activity of oxaloacetate acetylhydrolase (OAH), the enzyme believed to be responsible for oxalate formati...

متن کامل

Secondary Metabolite Contents and Antioxidant Enzyme Activities of Cichorium intybus Hairy Roots in Response to Zinc

Hairy root systems are formed by transforming plant tissues with the “natural genetic engineer” Agrobacterium rhizogenes. In most plants such as Cichorium intybus L., hairy root cultures have proven to be an efficient system for secondary metabolites production. The effect of Zinc (ZnSO4), a heavy metal, was investigated at different concentrations (0, 1, 5 and 10 mM) on some secondary metaboli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015